Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Выбрана 31 задача
Версия для печати
Убрать все задачи

Найдите координаты вершин треугольника, стороны которого лежат на прямых 2x + y - 6 = 0, x - y + 4 = 0 и y + 1 = 0.

Вниз   Решение


Через точку X, лежащую внутри треугольника ABC, проведены три отрезка, антипараллельных его сторонам. Докажите, что эти отрезки равны тогда и только тогда, когда X — точка Лемуана.

ВверхВниз   Решение


Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0.

ВверхВниз   Решение


Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

ВверхВниз   Решение


p – простое число. Сколько существует способов раскрасить вершины правильного p-угольника в a цветов? (Раскраски, которые можно совместить поворотом, считаются одинаковыми.)

ВверхВниз   Решение


а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

ВверхВниз   Решение


Автор: Фольклор

Найдите наибольшее натуральное n, при котором  n200 < 5300.

ВверхВниз   Решение


Дан выпуклый шестиугольник ABCDEF. Известно, что  ∠FAE = ∠BDC,  а четырёхугольники ABDF и ACDE являются вписанными.
Докажите, что прямые BF и CE параллельны.

ВверхВниз   Решение


В равнобедренном треугольнике ABC  (AC = BC)  угол при вершине C равен 20°. Биссектрисы углов A и B пересекают боковые стороны треугольника соответственно в точках A1 и B1. Докажите, что треугольник A1OB1 (где O – центр описанной окружности треугольника ABC) является равносторонним.

ВверхВниз   Решение


Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

ВверхВниз   Решение


В ряд стоят $9$ вертикальных столбиков. В некоторых местах между соседними столбиками вставлены горизонтальные палочки, никакие две из которых не находятся на одной высоте. Жук ползёт снизу вверх; когда он встречает палочку, он переползает по ней на соседний столбик и продолжает ползти вверх. Известно, что если жук начинает внизу первого столбика, то он закончит свой путь на девятом столбике. Всегда ли можно убрать одну из палочек так, чтобы жук в конце пути оказался наверху пятого столбика?

Например, если палочки расположены как на рисунке, то жук будет ползти по сплошной линии. Если убрать третью палочку на пути жука, то он поползёт по пунктирной линии.

ВверхВниз   Решение


Даны многочлен P(x) и такие числа  a1, a2, a3, b1, b2, b3,  что  a1a2a3 ≠ 0.  Оказалось, что  P(a1x + b1) + P(a2x + b2) = P(a3x + b3)  для любого действительного x. Докажите, что P(x) имеет хотя бы один действительный корень.

ВверхВниз   Решение


По мнению Тани, в идеальном кофейном напитке должно быть ровно в 9 раз больше кофе, чем молока. У Глеба есть стакан и кружка, а также целая цистерна молока и огромная турка с неограниченным запасом кофе. Аккуратный Глеб может отпить ровно половину содержимого кружки или стакана. Как Глебу приготовить для Тани целый стакан идеального кофейного напитка, если точный объём кружки неизвестен, но он как минимум на $10\%$ больше объёма стакана? Глеб может наливать кофе и молоко в стакан или в кружку, может выливать содержимое, переливать из кружки в стакан или наоборот, отпивать половину содержимого любое конечное количество раз.

ВверхВниз   Решение


Автор: Пешнин А.

Учительница продиктовала Вовочке угловые коэффициенты и свободные члены трёх разных линейных функций, графики которых параллельны. Невнимательный Вовочка при записи каждой из функций поменял местами угловой коэффициент и свободный член и построил графики получившихся функций. Сколько могло получиться точек, через которые проходят хотя бы два графика?

ВверхВниз   Решение


В спорткомплексе 99 шкафчиков с номерами от 01 до 99. На браслете с ключом цифры написаны по образцу на рисунке:

По браслету непонятно, где низ, а где верх, и поэтому иногда нельзя однозначно определить номер своего шкафчика (например, браслеты, соответствующие номерам 10 и 01, выглядят одинаково). Мише выдали один из ключей. В скольких случаях из 99 он, посмотрев на браслет, не сможет однозначно определить номер своего шкафчика?

ВверхВниз   Решение


Пусть P(x) – многочлен нечётной степени. Докажите, что уравнение  P(P(x)) = 0  имеет не меньше различных действительных корней, чем уравнение  P(x) = 0.

ВверхВниз   Решение


Правильный треугольник сложен из одинаковых прямоугольных (красных) и одинаковых равнобедренных (зелёных) треугольников так, как показано на рисунке. Чему равна площадь правильного треугольника, если площадь зелёного треугольника равна 1? При необходимости округлите ответ до двух знаков после запятой.

ВверхВниз   Решение


Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.

Пример расположения прямых (без последней прямой) изображен на рисунке.

ВверхВниз   Решение


На боковых сторонах $AB$ и $BC$ равнобедренного остроугольного треугольника $ABC$ выбраны точки $M$ и $K$. Отрезки $CM$ и $AK$ пересекаются в точке $E$. Оказалось, что $\angle MEA = \angle ABC$. Докажите, что середины всевозможных отрезков $MK$ лежат на одной прямой.

ВверхВниз   Решение


В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

ВверхВниз   Решение


На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?

ВверхВниз   Решение


Среди своих старых рисунков Катя нашла несколько картинок с разноцветным зонтиком. Катя помнит, что рисовала один и тот же зонтик (вид сверху), только повёрнутый по-разному. К сожалению, от времени краска частично выцвела.

Помогите Кате восстановить, в каком порядке располагались цвета на зонтике, если идти от 1 (розового) по часовой стрелке.

ВверхВниз   Решение


На дуге BC окружности, описанной около равностороннего треугольника ABC, взята произвольная точка P. Отрезки AP и BC пересекаются в точке Q. Докажите, что  1/PQ = 1/PB + 1/PC.

ВверхВниз   Решение


Треугольник ABC вписан в окружность радиуса R с центром O. Докажите, что площадь подерного треугольника точки P относительно треугольника ABC (см. задачу 5.99) равна  $ {\frac{1}{4}}$$ \left\vert\vphantom{1-\frac{d^2}{R^2}}\right.$1 - $ {\frac{d^2}{R^2}}$$ \left.\vphantom{1-\frac{d^2}{R^2}}\right\vert$SABC, где d = PO.

ВверхВниз   Решение


Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?

ВверхВниз   Решение


Прямая l касается окружности с диаметром AB в точке C; M и N — проекции точек A и B на прямую l, D — проекция точки C на AB. Докажите, что  CD2 = AM . BN.

ВверхВниз   Решение


Из прямоугольника 3×6 вырезали одну клетку (см. рис.). «Пришейте» эту клетку в другом месте так, чтобы получилась фигура, которую можно разрезать на две одинаковых.

ВверхВниз   Решение


В сумме

П,Я + Т,Ь + Д,Р + О,Б + Е,Й

все цифры зашифрованы буквами (разными буквами — разные цифры). Оказалось, что все пять слагаемых не целые, но сама сумма является целым числом. Каким именно? Для каждого возможного ответа напишите один пример с такими пятью слагаемыми. Объясните, почему другие суммы получить нельзя.

ВверхВниз   Решение


Пусть A1, B1 и C1 - основания перпендикуляров, опущенных из точки P на прямые BC, CA и AB. Треугольник A1B1C1 называют подерным (или педальным) треугольником точки P относительно треугольника ABC.
Пусть A1B1C1 — подерный треугольник точки P относительно треугольника ABC. Докажите, что  B1C1 = BC . AP/2R, где R — радиус описанной окружности треугольника ABC.

ВверхВниз   Решение


Расставьте в клетки квадрата 3×3 различные целые положительные числа, не большие 25, так, чтобы в любой паре соседних по стороне клеток одно число делилось на другое.

ВверхВниз   Решение


Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 363]      



Задача 32013

Темы:   [ Подсчет двумя способами ]
[ Числовые таблицы и их свойства ]
[ Доказательство от противного ]
Сложность: 2
Классы: 6,7,8

Можно ли в прямоугольной таблице 5×10 так расставить числа, чтобы сумма чисел каждой строки равнялась бы 30, а сумма чисел каждого столбца равнялась бы 10?

Прислать комментарий     Решение

Задача 32038

Темы:   [ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7,8

Можно ли провести из одной точки на плоскости пять лучей так, чтобы среди образованных ими углов было ровно четыре острых?
Рассматриваются углы не только между соседними, но и между любыми двумя лучами.

Прислать комментарий     Решение

Задача 32041

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 5,6,7,8

В поход пошли 20 туристов. Самому старшему из них 35 лет, а самому младшему 20 лет. Верно ли, что среди туристов есть одногодки?

Прислать комментарий     Решение

Задача 32043

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Уравнения в целых числах ]
Сложность: 2
Классы: 5,6,7

Придя в тир, Петя купил 5 пуль. За каждый успешный выстрел ему дают еще 5 пуль. Петя утверждает, что он сделал 50 выстрелов и 8 раз попал в цель, а его друг Вася говорит, что этого не может быть. Кто из мальчиков прав?

Прислать комментарий     Решение

Задача 32050

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 2
Классы: 6,7,8

В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Какое наименьшее количество боев надо провести, чтобы выявить победителя?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 363]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .