Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 39 задач
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Лестница имеет 100 ступенек. Коля хочет спуститься по лестнице, при этом он двигается начиная сверху прыжками вниз и вверх по очереди. Прыжки бывают трёх типов – на шесть ступенек (через пять на шестую), на семь и на восемь. Два раза на одну ступеньку Коля не становится. Сможет ли он спуститься?

Вниз   Решение


Существуют ли такие натуральные n и k, что десятичная запись числа 2n начинается числом 5k, а десятичная запись числа 5n начинается числом 2k?

ВверхВниз   Решение


Дан правильный треугольник ABC с центром O. Прямая, проходящая через вершину C, пересекает описанную окружность треугольника AOB в точках D и E. Докажите, что точки A, O и середины отрезков BD, BE лежат на одной окружности.

ВверхВниз   Решение


Даны 100 чисел. Когда каждое из них увеличили на 1, сумма их квадратов не изменилась. Каждое число ещё раз увеличили на 1.
Изменится ли сумма квадратов на этот раз, и если да, то на сколько?

ВверхВниз   Решение


Петя нарисовал на плоскости квадрат, разделил на 64 одинаковых квадратика и раскрасил их в шахматном порядке в чёрный и белый цвета. После этого он загадал точку, находящуюся строго внутри одного из этих квадратиков. Вася может начертить на плоскости любую замкнутую ломаную без самопересечений и получить ответ на вопрос, находится ли загаданная точка строго внутри ломаной или нет. За какое наименьшее количество таких вопросов Вася может узнать, какого цвета загаданная точка – белого или чёрного?

ВверхВниз   Решение


По краю многоугольного стола ползут два муравья. Все стороны стола длиннее 1 м, а расстояние между муравьями всегда ровно 10 см. Сначала оба муравья находятся на одной из сторон стола.
  a) Пусть стол выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы в каждой точке края побывал каждый из муравьев?
  б) Пусть стол не обязательно выпуклый. Всегда ли муравьи смогут проползти по краю стола так, чтобы на краю не осталось точек, в которых не побывал ни один из муравьев?

ВверхВниз   Решение


Незнайка хвастается, что написал в ряд несколько единиц, поставил между каждыми соседними единицами знак "+" или "×", расставил скобки и получил выражение, значение которого равно 2014; более того, если в этом выражении заменить одновременно все знаки "+" на знаки "×", а знаки "×" на знаки "+", все равно получится 2014. Может ли он быть прав?

ВверхВниз   Решение


На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

ВверхВниз   Решение


Имеется выпуклый многогранник со 100 рёбрами. Все его вершины срезали плоскостями-ножами близко от самих вершин (то есть так, чтобы плоскости-ножи не пересекались друг с другом внутри или на границе многогранника). Найдите у полученного многогранника
  a) число вершин;
  б) число рёбер.

ВверхВниз   Решение


Выпуклые четырёхугольники ABCD и PQRS вырезаны соответственно из бумаги и картона. Будем говорить, что они подходят друг к другу, если выполняются два условия:
    1) картонный четырёхугольник можно наложить на бумажный так, что его вершины попадут на стороны бумажного, по одной вершине на каждую сторону;
    2) если после этого перегнуть четыре образовавшихся маленьких бумажных треугольника на картонный, то они закроют весь картонный четырёхугольник в один слой.
  а) Докажите, что, если четырёхугольники подходят друг к другу, то у бумажного либо две противоположные стороны параллельны,
либо диагонали перпендикулярны.
  б) Докажите, что если ABCD – параллелограмм, то можно сделать подходящий к нему картонный четырёхугольник.

ВверхВниз   Решение


Автор: Кноп К.А.

Найдётся ли такое десятизначное число, записанное десятью различными цифрами, что после вычеркивания из него любых шести цифр получится составное четырёхзначное число?

ВверхВниз   Решение


Автор: Фомин С.В.

В кооперативе из 11 человек имеется партячейка. На каждом собрании ячейки происходит либо приём одного члена в партию, либо исключение из партии одного человека. В партячейке не может быть меньше трёх человек. Возвращаться к какому-либо из прежних составов партячейки запрещено уставом. Может ли к какому-то моменту оказаться, что все варианты состава ячейки реализованы?

 

ВверхВниз   Решение


Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

ВверхВниз   Решение


Царь вызвал двух мудрецов. Он дал первому 100 пустых карточек и приказал написать на каждой по положительному числу (числа не обязательно разные), не показывая их второму. Затем первый может сообщить второму несколько различных чисел, каждое из которых либо записано на какой-то карточке, либо равно сумме чисел на каких-то карточках (не уточняя, как именно каждое число получено). Второй должен определить, какие 100 чисел написаны на карточках. Если он этого не сможет, обоим отрубят головы; иначе из бороды каждого вырвут столько волосков, сколько чисел сообщил первый второму. Как мудрецам, не сговариваясь, остаться в живых и потерять минимальное количество волосков?

ВверхВниз   Решение


Известно, что число a положительно, а неравенство  10 < ax < 100  имеет ровно пять решений в натуральных числах.
Сколько таких решений может иметь неравенство  100 < ax < 1000?

ВверхВниз   Решение


Автор: Кноп К.А.

Дан треугольник, у которого нет равных углов. Петя и Вася играют в такую игру: за один ход Петя отмечает точку на плоскости, а Вася красит её по своему выбору в красный или синий цвет. Петя выиграет, если какие-то три из отмеченных им и покрашенных Васей точек образуют одноцветный треугольник, подобный исходному. За какое наименьшее число ходов Петя сможет гарантированно выиграть (каков бы ни был исходный треугольник)?

ВверхВниз   Решение


У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?

ВверхВниз   Решение


Клетки таблицы 5×7 заполнены числами так, что в каждом прямоугольнике 2×3 (вертикальном или горизонтальном) сумма чисел равна нулю. Заплатив 100 рублей, можно выбрать любую клетку и узнать, какое число в ней записано. Какого наименьшего числа рублей хватит, чтобы наверняка определить сумму всех чисел таблицы?

ВверхВниз   Решение


Четырёхугольник ABCD – вписанный,  AB = AD. На стороне BC взята точка M, а на стороне CD – точка N так, что угол MAN равен половине угла BAD.
Докажите, что  MN = BM + ND.

ВверхВниз   Решение


Наименьшее общее кратное натуральных чисел a, b будем обозначать [a, b]. Пусть натуральное число n таково, что  [n, n + 1] > [n, n + 2] > ... > [n, n + 35].
Докажите, что  [n, n + 35] > [n, n + 36].

ВверхВниз   Решение


Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.

ВверхВниз   Решение


Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

ВверхВниз   Решение


Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству  ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.

ВверхВниз   Решение


Доказать, что следующие числа не являются квадратами:
  а) 12345678;  б) 987654;  в) 1234560;  d) 98765445.

ВверхВниз   Решение


Назовём девятизначное число красивым, если все его цифры различны.
Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

ВверхВниз   Решение


На экране компьютера напечатано некоторое натуральное число, кратное 7, и отмечен курсором промежуток между какими-то двумя его соседними цифрами.
Докажите, что существует такая цифра, что если её впечатать в отмеченный промежуток любое число раз, получится число, делящееся на 7.

ВверхВниз   Решение


Существует ли целое n>1, удовлетворяющее неравенству [n2+2n+2]<[9n+6]? (Здесь [x] обозначает целую часть числа x, то есть наибольшее целое число, не превосходящее x.)

ВверхВниз   Решение


К плоскости приклеены два непересекающихся не обязательно одинаковых деревянных круга – серый и чёрный. Дан бесконечный деревянный угол, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи угла, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершине). Докажите, что внутри угла можно нарисовать луч, выходящий из вершины, так, чтобы при всевозможных положениях угла этот луч проходил через одну и ту же точку плоскости.

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  p² + 2  – простые.

ВверхВниз   Решение


Найти все такие натуральные числа p, что p и  5p + 1  – простые.

ВверхВниз   Решение


На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

ВверхВниз   Решение


Дана треугольная пирамида SABC, основание которой – равносторонний треугольник ABC, а все плоские углы при вершине S равны α. При каком наименьшем α можно утверждать, что эта пирамида правильная?

ВверхВниз   Решение


По кругу лежит  2n+1  монета орлом вверх. Двигаясь по часовой стрелке, делают  2n+1  переворот: переворачивают какую-то монету, одну монету пропускают и переворачивают следующую, две монеты пропускают и переворачивают следующую, три монеты пропускают и переворачивают следующую, и т.д., наконец пропускают 2n монет и переворачивают следующую. Докажите, что теперь ровно одна монета лежит решкой вверх.

ВверхВниз   Решение


Дан треугольник ABC. Пусть I – центр его вписанной окружности, P – такая точка на стороне AB, что угол PIB прямой, Q – точка, симметричная точке I относительно вершины A. Докажите, что точки C, I, P, Q лежат на одной окружности.

ВверхВниз   Решение


Можно ли расставить в клетках таблицы 6×6 числа, среди которых нет одинаковых, так, чтобы в каждом прямоугольнике 1×5 (как вертикальном, так и горизонтальном) сумма чисел была равна 2022 или 2023?

ВверхВниз   Решение


Существует ли натуральное число, которое можно представить в виде произведения двух палиндромов более чем 100 способами? (Палиндромом называется натуральное число, которое одинаково читается как слева направо, так и справа налево.)

ВверхВниз   Решение


Пятиугольник ABCDE описан около окружности. Углы при его вершинах A, C и E равны 100. Найдите угол ACE.

ВверхВниз   Решение


В прямоугольник ABCD вписывают равнобедренные треугольники с заданным углом α при вершине, противолежащей основанию, так, что эта вершина лежит на отрезке BC, а концы основания – на отрезках AB и CD. Докажите, что середины оснований у всех таких треугольников совпадают.

ВверхВниз   Решение


Автор: Фольклор

Найдите все натуральные n, удовлетворяющие условию: числа 1,2,3,,2n можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 66711  (#1)

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9,10,11

Окружность, проходящая через вершину B прямого угла и середину гипотенузы прямоугольного треугольника ABC, пересекает катеты этого треугольника в точках M и N. Оказалось, что AC=2MN. Докажите, что M и N — середины катетов треугольника ABC.
Прислать комментарий     Решение


Задача 66712  (#2)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Найдите все натуральные n, удовлетворяющие условию: числа 1,2,3,,2n можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Прислать комментарий     Решение


Задача 66713  (#3)

Темы:   [ Разрезания (прочее) ]
[ Раскраски ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 8,9,10,11

Клетчатый прямоугольник размера 7×14 разрезали по линиям сетки на квадраты 2×2 и уголки из трёх клеток. Могло ли квадратов получиться
  а) столько же, сколько уголков;
  б) больше, чем уголков?

Прислать комментарий     Решение

Задача 66714  (#4)

Тема:   [ Взвешивания ]
Сложность: 3+
Классы: 8,9,10,11

У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая?

Прислать комментарий     Решение

Задача 66715  (#5)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная запись числа ]
Сложность: 4-
Классы: 8,9,10,11

Назовём девятизначное число красивым, если все его цифры различны.
Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .